Höfundur: Hulda Hvönn Kristinsdóttir

Mengi (e. set) eru stærðfræðileg fyrirbæri sem heyra undir mengjafræði (e. set theory). Mengi eru, samkvæmt skilgreiningu, vel skilgreint samansafn aðgreinanlegra hluta. Með aðgreinanlegra er meint að engir tveir hlutir í gefnu mengi eru eins. Mengi leyfa, með öðrum orðum, ekki endurtekningar. Mengi eru jafn mismunandi og þau eru mörg. Mengið ℝ er mengi allra rauntalna, mengið spendýr er mengi allra dýra sem fæða afkvæmi sín mjólk úr spena, mengið Alþingi er mengi allra þeirra sem sinna starfi þingmanns á Íslandi. Því eru engar skorður settar hversu stór mengi eru eða af hverju þau standa.

Mengi af fánum ríkja ESB

Framsetning

breyta

Mengi eru oftast táknuð með slaufusvigum, það er   og stök aðgreind með kommum. Þá er mengið A sem samanstendur af tölunum 1 og 2 sett fram sem   . Tölurnar   og   eru kölluð stök mengisins  . Þá má skrifa að skrifað   sem lesið er „1 stak í  “. Sagt er að mengið   hafi fjöldatölu 2 þar sem það inniheldur 2 stök. Almennt gildir að fjöldatala segir til um fjölda staka í mengi. Innihaldi mengi óendanlega mörg stök hefur það fjöldatöluna  . Önnur framsetning á mengjum er með því að nota svokallaðar Venn myndir. Venn myndir eru myndræn framsetning á mengjum og eru nefndar eftir enska stærðfræðingnum John Venn. Mengi á Venn myndum eru almennt sett fram með hringjum og stök þeirra rituð innan þeirra.

 
Venn mynd þar sem A er hlutmengi í B og C

Hlutmengi

breyta

Hlutmengi er hluti af stökum annars mengis. Hlutmengi er mengi í eigin rétti og fylgir sömu lögum og lofum og mengi almennt gera. Ef við lítum til að mynda á mengið   þá er það hlutmengi í menginu   en mengið   er hlutmengi í  . Þá er ritað að  . Sérhvert mengi er hlutmengi í sjálfu sér og er þá kallað eiginlegt hlutmengi og tómamengið  , sem inniheldur engin stök, er hlutmengi í sérhverju mengi. Stundum er sagt að mengi   umlykji mengi   ef   er hlutmengi í   eða að   sé innihaldið í  . Hafa skal hugfast að stakið 1 og mengið   eru ekki sami hluturinn. Stakið 1 er tala en mengi eru ekki tölur, þó svo þau geti innihaldið tölur. Því er ekki rétt að skrifa að   eða að  . Rétt væri hins vegar að halda því fram að   og að  .

Sammengi og sniðmengi

breyta

Sammengi er mengi sem inniheldur öll stök tveggja eða fleiri mengja. Ef gefin eru mengin   og   þá er sammengi þeirra mengið   . Þá er skrifað að  . Sniðmengi, á hinn veginn, er mengi sem inniheldur þau stök sem eru sameiginleg tveimur eða fleiri mengjum. Því er sniðmengi mengjanna   og   mengið   þar sem   er eina stakið sem er bæði í   og  . Þá er ritað að  . Á vennmyndum eru sammengi sameining þeirra hringja sem vísa til tilsvarandi mengja sammengisins en sniðmengi á vennmyndum svæðið sem verður til þegar hringirnir skarast. Á myndinni hér að ofan er sammengið allur litaði flöturinn en sniðmengið er blágræna svæðið. Þar er mengið   hlutmengi í sniðmenginu, þ.e.  .

Fyllimengi og mengjamismunur

breyta

Fyllimengi mengis eru öll stök utan mengisins. Almennt, þegar talað er um fyllimengi, er svokallað almengi tiltekið. Almengi eru allar þær tölur sem við tökum til greina í útreikningunum hvert sinn og er oft táknað með  . Á vennmyndum eru þau gjarnar táknuð með rétthyrningum í stað hringja. Ef   og  . Fyllimengi   í   eru því öll stök   sem ekki eru í  , þau eru  . Þá er ritað að  . Ef   og   þá er mengjamismunur   við   mengið  , táknað með  , þ.e. öll stök   sem ekki eru í  .

Ýmis þekkt mengi

breyta

Sum mengi eru meira notuð en önnur. Þegar hefur verið nefnt mengi rauntalna. Skoðum þau helstu.

  •   er mengi náttúrulegra talna (e. natural numbers).
  •   er mengi náttúrulegra talna að viðbættri tölunni 0.
  •   er mengi heilla talna (e. integers). Það inniheldur mengi náttúrulegra talna auk neikvæðra, heilla talna og 0.
  •   er mengi allra ræðra talna (e. rational numbers), það er talna sem skrifa má sem almennt brot. Í því eru því allar heilar tölur sem og allar tölur sem skrifa má á forminu   þar sem  . Athugið sérstaklega að í þessu felast einnig öll endanlega löng tugabrot, eins og   og   og öll lotubundin tugabrot, eins og   og  .
  •   er mengi rauntalna (e. real numbers) og inniheldur öll áðurnefnd mengi sem og óræðar tölur á borð við  ,   og  .
 
Talnamengin

Ef gefið er mengi sem hefur plús í fótskrift táknar það mengi allra jákvæðra talna í gefnu mengi, t.a.m.   sem táknar allar jákvæðar, heilar tölur. Sambærileg skilgreining fæst fyrir mínus í fótskrift, sem táknar þá mengi allra neikvæðra talna í gefnu mengi. Athugið að 0 er hvorki jákvæð né neikvæð tala og er því aldrei hluti af mengi með plús eða mínus í fótskrift.

Spurningar

breyta
  1. Nefndu nokkur dæmi um mengi sem við notum dagsdaglega.
  2. Hvað eru Venn myndir? Útskýrðu hvenær þú heldur að þær geti komið að gagni.
  3. Búðu til mengin A, B og C sem innihalda einhverjar heiltölur á bilinu 1-20. Finndu  ,   og  . Er eitthvert mengjanna hlutmengi í öðru?
  4. Hver heldurðu að fjöldatala mengis allra náttúrulegra talna sé?

Krossapróf

breyta

1 Gefin eru mengin   og  . Hvað er  .

 
 
 
 

2 Í Staðarholtsskóla eru tvær nefndir, skemmtinefnd og ferðanefnd. Látum mengi þeirra sem eru í skemmtinefndinni vera táknað með S og ferðanefndinni F. Þá er   og  . Finndu mengi allra þeirra sem eru í ferðanefndinni en ekki í skemmtinefndinni og tjáðu með stærðfræðilegum táknum.

 
 
 
 

3 Hver er fjöldatala mengisins  ?

34
8
99
9

4 Hvert af eftirtöldu er ekki mengi?

Sjávardýr
Nemendur í Háteigsskóla
Harry Potter bækurnar
Þetta eru allt mengi.

5 Gefið er mengið   og  . Merktu við rétta fullyrðingu.

 
 
 
 

6 Merktu við réttan kross.

 
 
 
 


Heimildir

breyta


Tengt efni

breyta

Gagnlegir tenglar og myndbönd

breyta